Linear combinations of orthogonal polynomials generating positive quadrature formulas

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Combinations of Orthogonal Polynomials Generating Positive Quadrature Formulas

Let pk(x) = x +■■■ , k e N0 , be the polynomials orthogonal on [-1, +1] with respect to the positive measure da . We give sufficient conditions on the real numbers p , j = 0, ... , m , such that the linear combination of orthogonal polynomials YfLo^jPn-j has n simple zeros in (—1,-1-1) and that the interpolatory quadrature formula whose nodes are the zeros of Yfj=oßjPn-j has positive weights.

متن کامل

Construction of σ-orthogonal Polynomials and Gaussian Quadrature Formulas

Let dα be a measure on R and let σ = (m1,m2, ..., mn), where mk ≥ 1, k = 1, 2, ..., n, are arbitrary real numbers. A polynomial ωn(x) := (x − x1)(x − x2)...(x − xn) with x1 ≤ x2 ≤ ... ≤ xn is said to be the n-th σ-orthogonal polynomial with respect to dα if the vector of zeros (x1, x2, ..., xn) is a solution of the extremal problem ∫

متن کامل

On Linear Combinations of Orthogonal Polynomials

In this expository paper, linear combinations of orthogonal polynomials are considered. Properties like orthogonality and interlacing of zeros are presented.

متن کامل

Quadrature formulas for integrals transforms generated by orthogonal polynomials

By using the three-term recurrence equation satisfied by a family of orthogonal polynomials, the Christoffel-Darboux-type bilinear generating function and their asymptotic expressions, we obtain quadrature formulas for integral transforms generated by the classical orthogonal polynomials. These integral transforms, related to the so-called Poisson integrals, correspond to a modified Fourier Tra...

متن کامل

Orthogonal Polynomials and Quadrature

Various concepts of orthogonality on the real line are reviewed that arise in connection with quadrature rules. Orthogonality relative to a positive measure and Gauss-type quadrature rules are classical. More recent types of orthogonality include orthogonality relative to a sign-variable measure, which arises in connection with Gauss-Kronrod quadrature, and power (or implicit) orthogonality enc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1990

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1990-1023052-9